LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - PHYSICS

SIXTH SEMESTER - APRIL 2010
PH 6605/PH 6603/PH 6600 - QUANTUM MECHANICS \& RELATIVITY

Date \& Time: 15/04/2010 / 9:00-12:00
Dept. No. Max. : 100 Marks

PART - A

Answer ALL the questions

(10 $\times 2$ = 20 Marks $)$

1. What is Compton effect.
2. What are matter waves?
3. What is the physical significance of wave function?
4. State Ehrenfest's theorem.
5. What do you mean by eigen function and eigen value?
6. Show that $\left[L_{y}, L_{z}\right]=i \hbar L_{x}$.
7. State the postulates of special theory of relativity.
8. A particle of rest mass m_{0} moves with speed $C / \sqrt{2}$. Calculate its mass.
9. State is the principle of equivalence?
10. Define the terms: (i) Inertial mass and (ii) Gravitational mass.

PART - B

Answer any FOUR questions.
11. (a) State and explain the uncertainty principle.
(b) Calculate the smallest possible uncertainty in the position of an electron moving with a velocity $3 \times 10^{7} \mathrm{~m} / \mathrm{s}$.
12. Explain α - decay using the concept of quantum mechanical tunneling.
13. (a) Find the Haminltonianoperator for a single particle moving in 1 dimension.
(b) Show that the sum of two Hermitian operators is also Hermitian.
14. (a) Derive Einstein's mass - energy relation.
(b) Calculate the rest mass energy of an electron in MeV .
15. Discuss the effect of gravitational field on a ray of light.

PART - C

Answer any FOUR questions.
16. (a) Describe the principle, construction and working of an electron Microscope.
(b) What are its important applications?
17. Derive time dependent Schrödinger wave equation starting from fundamental wave equation.
18. (a) What is a rigid rotator?
(b) Solve Schrödinger equation for it and obtain the eigen functions and the eigen values.
19. (a) Derive Lorentz transformation equations.
(b) With what velocity should a spaceship fly so that every year spent on it corresponds to 4 years on the earth's surface? Given $\mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$.
20. (a) Discuss gravitational red shift.
(b) Explain planetary motion in the gravitational filed and interpret the nature of the path of the planet.

